Introduction to Macroeconomics

Intermediate Macroeconomic Theory
Macroeconomic Analysis

University of North Texas
Outline

1. What Macroeconomists Study

2. The Data of Macroeconomics
 - Measuring the Value of Aggregate Economic Activity
 - Measuring the Cost of Living
 - Measuring Joblessness

3. How Economists Think
Outline

1. What Macroeconomists Study

2. The Data of Macroeconomics
 - Measuring the Value of Aggregate Economic Activity
 - Measuring the Cost of Living
 - Measuring Joblessness

3. How Economists Think
Macroeconomics, the study of the economy as a whole, attempts to answer the following issues:

1. Economic growth
2. Inflation
3. Unemployment

Microeconomics: the study of the economy in the small (individual firm, industry, or consumer)
Macroeconomics, the study of the economy as a whole, attempts to answer the following issues:

1. Economic growth
2. Inflation
3. Unemployment

Microeconomics: the study of the economy in the small (individual firm, industry, or consumer)
Macroeconomics, the study of the economy as a whole, attempts to answer the following issues:

1. Economic growth
2. Inflation
3. Unemployment

Microeconomics: the study of the economy in the small (individual firm, industry, or consumer)
Macroeconomics, the study of the economy as a whole, attempts to answer the following issues:

1. Economic growth
2. Inflation
3. Unemployment

Microeconomics: the study of the economy in the small (individual firm, industry, or consumer)
Macroeconomics, the study of the economy as a whole, attempts to answer the following issues:

1. Economic growth
2. Inflation
3. Unemployment

Microeconomics: the study of the economy in the small (individual firm, industry, or consumer)
Outline

1. What Macroeconomists Study

2. The Data of Macroeconomics
 - Measuring the Value of Aggregate Economic Activity
 - Measuring the Cost of Living
 - Measuring Joblessness

3. How Economists Think
1. Economic growth rate: \(g = \% \Delta \text{ value of aggregate economic activity (} Y \text{)} \)

2. Inflation rate: \(\pi = \% \Delta \text{ cost of living (} P \text{)} \)

3. Unemployment rate: \(u = \frac{\# \text{ of unemployed}}{\text{labor force}} \times 100 \)
1 Economic growth rate: $g = \%\Delta$ value of aggregate economic activity (Y)

2 Inflation rate: $\pi = \%\Delta$ cost of living (P)

3 Unemployment rate: $u = \frac{\# \text{ of unemployed}}{\text{ labor force}} \times 100$
1. Economic growth rate: \(g = \% \Delta \text{ value of aggregate economic activity (}\ Y\text{)} \)

2. Inflation rate: \(\pi = \% \Delta \text{ cost of living (}\ P\text{)} \)

3. Unemployment rate: \(u = \frac{\# \text{ of unemployed}}{\text{ labor force}} \times 100 \)
Gross Domestic Product (GDP)

1. Sum of *money (market)* values of
2. all *final* goods and services
3. produced *within* a country
4. in a given *period of time* (usually a calendar year)
Gross Domestic Product (GDP)

1. Sum of money (market) values of
2. all final goods and services
3. produced within a country
4. in a given period of time (usually a calendar year)
Gross Domestic Product (GDP)

1. Sum of money (market) values of
2. all final goods and services
3. produced within a country
4. in a given period of time (usually a calendar year)
Gross Domestic Product (GDP)

1. Sum of *money (market)* values of
2. all *final* goods and services
3. produced *within* a country
4. in a given *period of time* (usually a calendar year)
Gross Domestic Product (GDP)

1. Sum of money (market) values of
2. all final goods and services
3. produced within a country
4. in a given period of time (usually a calendar year)
Gross Domestic Product (GDP)

1. Sum of money (market) values of
2. all final goods and services
3. produced within a country
4. in a given period of time (usually a calendar year)
Nominal GDP ($P \times Y$): the value of goods and services measured at current prices

- Changes in nominal GDP can be due to
 1. changes in prices
 2. changes in quantities of output produced

\Rightarrow Not a good measure of economic well-being

Real GDP (Y): the value of goods and services measured at constant prices

- Changes in real GDP can only be due to changes in quantities, because real GDP is constructed using constant base-year prices
Nominal GDP ($P \times Y$): the value of goods and services measured at current prices

- Changes in nominal GDP can be due to
 1. changes in prices
 2. changes in quantities of output produced

⇒ Not a good measure of economic well-being

Real GDP (Y): the value of goods and services measured at constant prices

- Changes in real GDP can only be due to changes in quantities, because real GDP is constructed using constant base-year prices
Measuring the Value of Aggregate Economic Activity
Nominal GDP versus Real GDP

- Nominal GDP \((P \times Y) \): the value of goods and services measured at current prices

 - Changes in nominal GDP can be due to
 1. changes in prices
 2. changes in quantities of output produced

 \[\Rightarrow \text{Not a good measure of economic well-being} \]

- Real GDP \((Y) \): the value of goods and services measured at constant prices

 - Changes in real GDP can only be due to changes in quantities, because real GDP is constructed using constant base-year prices
Nominal GDP ($P \times Y$): the value of goods and services measured at **current** prices

- Changes in nominal GDP can be due to
 1. changes in prices
 2. changes in quantities of output produced

⇒ Not a good measure of economic well-being

Real GDP (Y): the value of goods and services measured at **constant** prices

- Changes in real GDP can only be due to changes in quantities, because real GDP is constructed using constant base-year prices
Measuring the Value of Aggregate Economic Activity
Nominal GDP versus Real GDP

Nominal GDP \((P \times Y)\): the value of goods and services measured at current prices

- Changes in nominal GDP can be due to
 1. changes in prices
 2. changes in quantities of output produced

⇒ Not a good measure of economic well-being

Real GDP \((Y)\): the value of goods and services measured at constant prices

- Changes in real GDP can only be due to changes in quantities, because real GDP is constructed using constant base-year prices
Nominal GDP ($P \times Y$): the value of goods and services measured at current prices

- Changes in nominal GDP can be due to
 1. changes in prices
 2. changes in quantities of output produced

⇒ Not a good measure of economic well-being

Real GDP (Y): the value of goods and services measured at constant prices

- Changes in real GDP can only be due to changes in quantities, because real GDP is constructed using constant base-year prices
Nominal GDP \((P \times Y)\): the value of goods and services measured at \textit{current} prices

- Changes in nominal GDP can be due to
 1. changes in prices
 2. changes in quantities of output produced

⇒ Not a good measure of economic well-being

Real GDP \((Y)\): the value of goods and services measured at \textit{constant} prices

- Changes in real GDP can only be due to changes in quantities, because real GDP is constructed using constant base-year prices
Nominal GDP \((P \times Y)\): the value of goods and services measured at current prices

- Changes in nominal GDP can be due to:
 1. changes in prices
 2. changes in quantities of output produced

 \[\Rightarrow \text{Not a good measure of economic well-being} \]

Real GDP \((Y)\): the value of goods and services measured at constant prices

- Changes in real GDP can only be due to changes in quantities, because real GDP is constructed using constant base-year prices
The Bureau of Economic Analysis (http://www.bea.doc.gov)

Real GDP per person \((y = \frac{Y}{N})\): income of the average person in the economy

U.S. real GDP per person in 1996 dollars
Measuring the Value of Aggregate Economic Activity
RGDP per person

- Real GDP per person \((y = \frac{Y}{N})\): income of the average person in the economy
- U.S. real GDP per person in 1996 dollars

Stylized Facts

1. Long-run upward trend
2. Short-run fluctuations
Real GDP per person \((y = \frac{Y}{N}) \): income of the average person in the economy

U.S. real GDP per person in 1996 dollars

Stylized Facts

1. Long-run upward trend
2. Short-run fluctuations
Real GDP per person \((y = \frac{Y}{N}) \): income of the average person in the economy

U.S. real GDP per person in 1996 dollars

Stylized Facts

1. Long-run upward trend
2. Short-run fluctuations
Measuring the Cost of Living

1. Consumer Price Index (CPI)
2. Producer Price Index (PPI)
3. GDP Deflator
Measuring the Cost of Living

1. Consumer Price Index (CPI)
2. Producer Price Index (PPI)
3. GDP Deflator
Measuring the Cost of Living

1. Consumer Price Index (CPI)
2. Producer Price Index (PPI)
3. GDP Deflator
1. Consumer Price Index (CPI)
2. Producer Price Index (PPI)
3. GDP Deflator
CPI is measured by pricing the items on a list representative of a typical urban household budget.

How the BLS constructs the CPI:

Most price indexes, like CPI, are computed by pricing a standard market basket of goods in subsequent periods.
CPI is measured by pricing the items on a list representative of a typical urban household budget.

How the BLS constructs the CPI:

- Most price indexes, like CPI, are computed by pricing a standard market basket of goods in subsequent periods.
CPI is measured by pricing the items on a list representative of a typical urban household budget.

How the BLS constructs the CPI:

- Most price indexes, like CPI, are computed by pricing a standard market basket of goods in subsequent periods.
CPI is measured by pricing the items on a list representative of a typical urban household budget.

How the BLS constructs the CPI:

1. Survey consumers to determine composition of the typical consumer’s basket of goods.
2. Every month, collect data on prices of all items in the basket; compute cost of basket.
3. CPI in any month equals
 \[\frac{\text{cost of basket in that month}}{\text{cost of basket in base period}} \times 100 \]

Most price indexes, like CPI, are computed by pricing a standard market basket of goods in subsequent periods.
CPI is measured by pricing the items on a list representative of a typical urban household budget.

How the BLS constructs the CPI:

Most price indexes, like CPI, are computed by pricing a standard market basket of goods in subsequent periods.
The composition of the U.S. CPI’s basket

- Food and bev. 16.2%
- Housing 40.0%
- Apparel 4.5%
- Transportation 17.6%
- Medical care 5.8%
- Recreation 5.9%
- Education 2.8%
- Communication 2.5%
- Other goods and services 4.8%
- Other goods and services 16.2%
Inflation rate ($\pi = \% \Delta P$): the percentage change in the average level of prices from the year before.
Deflating: the process of finding the real value of some monetary magnitude by dividing by some appropriate price index

A price index \((P)\) can be used to

1. measure inflation
2. deflate nominal values to adjust for inflation

\[
\text{real wage in 2000} = \frac{\text{money wage in 2000}}{\text{CPI of 2000}} \times 100
\]
Deflating: the process of finding the real value of some monetary magnitude by dividing by some appropriate price index.

A price index \((P) \) can be used to:

1. measure inflation
2. deflate nominal values to adjust for inflation

\[
\text{real wage in 2000} = \frac{\text{money wage in 2000}}{\text{CPI of 2000}} \times 100
\]
Deflating: the process of finding the real value of some monetary magnitude by dividing by some appropriate price index

A price index \(P \) can be used to

1. measure inflation
2. deflate nominal values to adjust for inflation

\[
\text{real wage in 2000} = \frac{\text{money wage in 2000}}{\text{CPI of 2000}} \times 100
\]
Deflating: the process of finding the real value of some monetary magnitude by dividing by some appropriate price index

A price index \((P)\) can be used to

1. measure inflation
2. deflate nominal values to adjust for inflation

\[
\text{real wage in 2000} = \frac{\text{money wage in 2000}}{\text{CPI of 2000}} \times 100
\]
Deflating: the process of finding the real value of some monetary magnitude by dividing by some appropriate price index

A price index \((P) \) can be used to

1. measure inflation
2. deflate nominal values to adjust for inflation

\[
\text{real wage in 2000} = \frac{\text{money wage in 2000}}{\text{CPI of 2000}} \times 100
\]
Measuring the Cost of Living

GDP Deflator

- GDP Deflator: price index used to deflate GDP

\[
\text{real GDP} = \frac{\text{nominal GDP}}{\text{GDP deflator}} \times 100
\]

- The GDP deflator includes the price of airplanes, government service, other goods purchased by business.

- Different price indexes, such as the CPI and the GDP deflator, will show different measures of inflation because they use different market basket.

- However, the discrepancy is usually minor.
GDP Deflator: price index used to deflate GDP

\[\text{real GDP} = \frac{\text{nominal GDP}}{\text{GDP deflator}} \times 100\]

The GDP deflator includes the price of airplanes, government service, other goods purchased by business.

Different price indexes, such as the CPI and the GDP deflator, will show different measures of inflation because they use different market basket.

However, the discrepancy is usually minor.
Measuring the Cost of Living

GDP Deflator

- GDP Deflator: price index used to deflate GDP

\[
\text{real GDP} = \frac{\text{nominal GDP}}{\text{GDP deflator}} \times 100
\]

- The GDP deflator includes the price of airplanes, government service, other goods purchased by business.

- Different price indexes, such as the CPI and the GDP deflator, will show different measures of inflation because they use different market basket.

- However, the discrepancy is usually minor.
GDP Deflator: price index used to deflate GDP

\[
\text{real GDP} = \frac{\text{nominal GDP}}{\text{GDP deflator}} \times 100
\]

The GDP deflator includes the price of airplanes, government service, other goods purchased by business.

Different price indexes, such as the CPI and the GDP deflator, will show different measures of inflation because they use different market basket.

However, the discrepancy is usually minor.
Measuring the Cost of Living

GDP Deflator

- GDP Deflator: price index used to deflate GDP

\[
\text{real GDP} = \frac{\text{nominal GDP}}{\text{GDP deflator}} \times 100
\]

- The GDP deflator includes the price of airplanes, government service, other goods purchased by business

- Different price indexes, such as the CPI and the GDP deflator, will show different measures of inflation because they use different market basket

- However, the discrepancy is usually minor
GDP Deflator: price index used to deflate GDP

\[
\text{real GDP} = \frac{\text{nominal GDP}}{\text{GDP deflator}} \times 100
\]

The GDP deflator includes the price of airplanes, government service, other goods purchased by business.

Different price indexes, such as the CPI and the GDP deflator, will show different measures of inflation because they use different market basket.

However, the discrepancy is usually minor.
Measuring the Cost of Living

CPI versus GDP Deflator

- Two measures of inflation
Unemployment: the macroeconomic problem that affects people most directly and severely

How well an economy uses its resources

Unemployment rate is calculated and announced each month by the BLS (http://www.bls.gov)

\[u = \frac{\text{# of unemployed}}{\text{labor force}} \times 100 \]
Unemployment: the macroeconomic problem that affects people most directly and severely

How well an economy uses its resources

Unemployment rate is calculated and announced each month by the BLS (http://www.bls.gov)

\[u = \frac{\# \text{ of unemployed}}{\text{labor force}} \times 100 \]
Unemployment: the macroeconomic problem that affects people most directly and severely

How well an economy uses its resources

Unemployment rate is calculated and announced each month by the BLS (http://www.bls.gov)

\[u = \frac{\# \text{ of unemployed}}{\text{labor force}} \times 100 \]
Unemployment: the macroeconomic problem that affects people most directly and severely

How well an economy uses its resources

Unemployment rate is calculated and announced each month by the BLS (http://www.bls.gov)

\[u = \frac{\text{# of unemployed}}{\text{labor force}} \times 100 \]
U.S. unemployment rate

- There is always some unemployment (even in the LR)
- Short-run fluctuations

Diagram showing the U.S. unemployment rate from 1900 to 2000 with key events such as World War I, Great Depression, World War II, Korean War, Vietnam War, First oil price shock, and Second oil price shock.
Measuring Joblessness
Unemployment Rate

- U.S. unemployment rate

- Stylized Facts
 1. There is always some unemployment (even in the LR)
 2. Short-run fluctuations
U.S. unemployment rate

Stylized Facts

1. There is always some unemployment (even in the LR)

2. Short-run fluctuations
Measuring Joblessness
Unemployment Rate

- U.S. unemployment rate

- Stylized Facts
 1. There is always some unemployment (even in the LR)
 2. Short-run fluctuations
Okun’s Law

- Employed workers help produce GDP, while unemployed workers do not.
- So one would expect a negative relationship between unemployment and real GDP.
- This relationship is clear in the data.
Okun’s Law

- Employed workers help produce GDP, while unemployed workers do not
- So one would expect a negative relationship between unemployment and real GDP
- This relationship is clear in the data
Okun’s Law

- Employed workers help produce GDP, while unemployed workers do not

- So one would expect a negative relationship between unemployment and real GDP

- This relationship is clear in the data
Okun’s Law

- Employed workers help produce GDP, while unemployed workers do not
- So one would expect a negative relationship between unemployment and real GDP
- This relationship is clear in the data
Okun’s Law states that a one-percent decrease in unemployment is associated with two percentage points of additional growth in real GDP.
Outline

1. What Macroeconomists Study

2. The Data of Macroeconomics
 - Measuring the Value of Aggregate Economic Activity
 - Measuring the Cost of Living
 - Measuring Joblessness

3. How Economists Think
Economists use “model” to illustrate the essence of the real economy and to help explain economic variables.

Economic variables

1. **Endogenous** variables: those that the model explains
2. **Exogenous** variables: those that come from outside the model

An economic model can show how the exogenous variables affect the endogenous variables.

1. The model of supply and demand
2. The circular flow of dollars through the economy
Economists use “model” to illustrate the essence of the real economy and to help explain economic variables.

Economic variables

1. **Endogenous variables**: those that the model explains.
2. **Exogenous variables**: those that come from outside the model.

An economic model can show how the exogenous variables affect the endogenous variables.

1. The model of supply and demand.
2. The circular flow of dollars through the economy.
Economists use “model” to illustrate the essence of the real economy and to help explain economic variables.

Economic variables:
1. **Endogenous** variables: those that the model explains.
2. **Exogenous** variables: those that come from outside the model.

An economic model can show how the exogenous variables affect the endogenous variables:
1. The model of supply and demand.
2. The circular flow of dollars through the economy.
Economists use “model” to illustrate the essence of the real economy and to help explain economic variables.

- **Economic variables**
 1. **Endogenous** variables: those that the model explains.
 2. **Exogenous** variables: those that come from outside the model.

An economic model can show how the exogenous variables affect the endogenous variables.

 1. The model of supply and demand.
 2. The circular flow of dollars through the economy.
Economists use “model” to illustrate the essence of the real economy and to help explain economic variables.

Economic variables

1. **Endogenous** variables: those that the model explains.
2. **Exogenous** variables: those that come from outside the model.

An economic model can show how the exogenous variables affect the endogenous variables.

1. The model of supply and demand.
2. The circular flow of dollars through the economy.
Economists use “model” to illustrate the essence of the real economy and to help explain economic variables.

Economic variables:
1. **Endogenous** variables: those that the model explains
2. **Exogenous** variables: those that come from outside the model

An economic model can show how the exogenous variables affect the endogenous variables:
1. The model of supply and demand
2. The circular flow of dollars through the economy
Economists use "model" to illustrate the essence of the real economy and to help explain economic variables.

Economic variables

1. **Endogenous** variables: those that the model explains
2. **Exogenous** variables: those that come from outside the model

An economic model can show how the exogenous variables affect the endogenous variables.

1. The model of supply and demand
2. The circular flow of dollars through the economy