Exam I, Chemistry 4610/5560, Fall 2005 Department of Chemistry, University of North Texas, Dr. Mohammad Omary

<u>Student name:</u>

1) a. Fill the following table with the appropriate n_l and n_h values that correspond to the indicated emission lines in the atomic spectrum of hydrogen. (9 points)

······································			(* F ••••••)	
Series	Line	n_l	n_h	
Paschen	Lowest energy			
	2 nd lowest energy			
	3 rd lowest energy			
Balmer	Lowest energy			
	2 nd lowest energy			
	3 rd lowest energy			
Lyman	Longest wavelength			
	2 nd longest wavelength			
	3 rd longest wavelength			

b. Determine the wavenumber (in cm^{-1}), wavelength (in nm), and energy (in J) for the lowest-energy line in the Paschen series of the hydrogen spectrum and determine whether it lies in the visible, infrared, or ultraviolet region of the electromagnetic radiation.

Useful constants: Planck constant (h) = 6.626×10^{-34} J s; Speed of light (c) = 2.998×10^8 m s⁻¹; Rydberg constant ($R_{\rm H}$) = 1.097 × 10⁷ m⁻¹.

(12 points)

2) a. Write down the electronic configuration for a neutral Ti atom (show the Noble gas configuration followed by the valence electrons). (2 points)

b. Calculate the <i>n</i> , <i>l</i> ,	in part a.	(8 points)		
Electron	n	L	m_l	m_s

(4 points)

c. Explain how your answers illustrate:

e. Determine the point group for each.

- The Pauli exclusion principle:

- Hund's rule:

3) Ferrocene is a famous reagent in organometallic chemistry. In addition to its many scientific applications, ferrocene is used today as a fuel additive, a catalyst, and it also has current and potential biomedical, nanotechnology, and electronics applications. The structure of ferrocene is shown.

a. Iron in ferrocene has a +2 oxidation state	. Write down the elec	tronic configura	tion for Fe ²⁺ . (2 points)
b. Label the point group of the ferrocene on c. Draw the eclipsed isomer of ferrocene an $\sqrt{(1)}$	staggered). roup.	(3 points) (4 points)	
4) Answer the following questions for each	of the three following	molecules or io	ons:
$[COS_2]^2$ (C is central)	PCl ₃ Br ₂	$[\text{TeF}_4]^2$	
a. Write the electronic configuration for the co	entral atom.		(3 points)
b. Draw the Lewis dot structure.			(6 points)
c. Determine the molecular geometry of each	(draw the structure and	give its name).	(6 acinto)
			(o points)
d. Determine whether each compound is polar	r or non-polar.		(6 points)

(9 points)

Exam I, Chemistry 4610/5560, Fall 2005 Department of Chemistry, University of North Texas, Dr. Mohammad Omary

p. 3 of 3

5) The octahedral complex $[Co(CO)_3Cl_3]$ has two geometrical isomers: *fac-* and *mer-* as shown below. a. Write down the electronic configuration for the Co³⁺ ion.

(2 points)

b. Determine the point group for both the *fac*- and *mer*- isomers of $[Co(CO)_3Cl_3]$. (4 points)

c. Show how group theory can be used to distinguish between the two isomers based on differences in the v_{C-O} infrared and Raman bands. That is, determine the irreducible representations that correspond to the C-O stretching vibrations in each isomer, then determine whether each mode is IR or Raman active, and finally conclude how many v_{C-O} bands are expected in the IR and Raman spectrum of each isomer.

(20 points)