Problems Bank for Chapters 9-11 Chemistry 4610/5560, Dr. Mohammad Omary Inorganic Chemistry, Fall 2006 Department of Chemistry, University of North Texas

Chapter 9 Material:

- (1) Answer the following questions about the complex $Cr(CO)_2(CN)_2(NH_3)_2$:
 - a. Name the complex.
 - b. Draw all possible geometric isomers and indicate which isomers are chiral (*for chiral isomers, do <u>NOT</u> draw their mirror images; just indicate that they are chiral*).

- c. If the infrared spectrum of a compound with the above formula shows two v_{C-O} bands and one v_{C-N} band, identify the actual structure amongst the isomers you have drawn above. Explain.
- (2) a. Name the compounds $[Re(CO)_3(en)Br]$, $[Pt(NH_3)_3Cl_3]Cl$, $[Co(en)_3]Cl_2$, and $[Ru(SCN)_2(bipy)_2](NO_3)_2$
 - b. Draw <u>ALL</u> possible stereoisomers for the complex in each compound and indicate which are chiral (*for chiral isomers, do <u>NOT</u> draw their mirror images; just indicate that they are chiral*).

(you may use N N to represent "en" and "bipy"):

(3) Draw the structure of di-µ-carbonylbis(tricarbonylcobalt)(0).

(4) The same dithiophosphonate (dtp) ligand below exists in different modes in different coordination compound, as seen in the following scheme from a recent paper for Dr. Omary (*Inorg. Chem.* **2003**, *42*, 5311-5319). Determine the mode(s) of the dtp ligand in each of compounds **1-6** in this scheme (i.e., monodentated, bridging bidentate, chelating bidentate, counter ion, etc.).

dtp = dithiophosphonate = $[S_2P(R)(OR')]$ - with R= p-C₆H₄-OCH₃; R'= c-C₅H₉

Compound 1: Compound 2: Compound 3: Compound 4: Compound 5: Compound 6:

Chapter 10 Material:

PART I. Multiple-choice:

1. Which statement most correctly describes crystal field theory for a d block complex of unspecified geometry?

- a. The theory considers covalent interactions between a metal centre and the surrounding ligands.
- b. The theory considers electrostatic interactions between a metal ion and the surrounding ligands which are taken to be point charges.
- c. The theory rationalizes the non-degeneracy of the metal d orbitals by considering the electrostatic repulsions between point charge ligands and electrons in the metal d orbitals.
- d. The theory rationalizes why the metal d orbitals are split into two levels.
- 2. Which of the following correctly places the ligands in their order in the spectrochemical series?

 $\begin{array}{l} a. \ Br^- < Cl^- < NH_3 < H_2O \\ b. \ l^- < Br^- < H_2O < [OH]^- \\ c. \ F^- < Cl^- < H_2O < NH_3 \\ d. \ l^- < Cl^- < H_2O < en \\ \end{array}$

- 3. Which of the following correctly places the metal centers in order of increasing field strength?
 - a. Mn(II) < Fe(III) < Rh(III)
 - b. Co(III) < Co(II) < Rh(III)
 - c. Pt(IV) < Pd(II) < Ni(II)
 - d. Pd(II) < Ni(II) < Pt(IV)

4. Which of the following complex ions is tetrahedral?

- a. $[PdCl_4]^{2-}$
- b. $[PtCl_4]^{2-}$
- c. [NiCl₄]²⁻
- d. $[AuCl_4]^{2-}$

5. Match up the correct formula and magnetic property. Which pair is correct?

- a. $[Zn(H_2O)_6]^{2+}$; paramagnetic
- b. $[Co(NH_3)_6]^{3+}$; diamagnetic
- c. $[CoF_6]^{3-}$; diamagnetic
- d. $[V(H_2O)_6]^{2+}$; diamagnetic

PART II. Problems

1. According to the crystal field theory, the five *d* orbitals, which are degenerate in a free ion, become no longer degenerate when a transition metal ion is placed in a ligand field environment. Predict the splitting of *d*-orbitals in both *Oh* and *Td* environments (σ -only scheme when there are only σ -donor ligands).

<u>Free ion</u>

<u>Oh</u>

Td

 $\overline{d}_{xy} \ \overline{d}_{xz} \ \overline{d}_{yz} \ \overline{d}_{z2} \ \overline{d}_{x2\text{-}y2}$

2. Predict the splitting of *d*-orbitals in octahedral environments when the ligands are σ -donor/ π -acceptor and σ -donor/ π -donor.

<u>Free ion</u>

<u>Oh (σ -donor/ π -acceptor)</u>

<u>Oh (σ -donor/ π -donor)</u>

 $\overline{d_{xy}} \ \overline{d_{xz}} \ \overline{d_{yz}} \ \overline{d_{z2}} \ \overline{d_{x2-y2}}$

3. Compare the largest crystal field splitting in octahedral (Δ_o) vs. tetrahedral (Δ_t) complexes; and in tetrahedral (Δ_t) vs. square planar (Δ_1) complexes.

4. Use the concepts of crystal field theory to predict the <u>*highest-energy*</u> orbital or group of orbitals among the five *d* orbitals when a transition metal ion is placed in the following types of ligand field environments (assuming conventional axes definition is used):

a. Square planar:

b. Trigonal bipyramidal:

c. Linear:

d. Trigonal planar:

e. Square pyramidal:

f. T-shape:

5. Predict the correct hybridization for the metal ion in the following complexes, based on the concepts of the valence bond theory.

a. a diamagnetic d^6 octahedral complex.

b. a paramagnetic d^6 octahedral complex.

c. a diamagnetic d^8 square planar complex.

d. a paramagnetic d^5 tetrahedral complex.

e. a linear 2-coordinate d^{10} complex.

6. Sketch the electronic distribution of the *d* electrons in the crystal field orbitals for the appropriate geometry of each complex and then calculate the spin-only magnetic moment ($\mu_{spin-only}$) for the complex. If there is a possibility for high-spin or low-spin configuration, explain your selection.

<u>Co</u> i.	$\frac{\text{omplex:}}{\left[\text{Cr}(\text{H}_2\text{O})_6\right]^{2+}}$	crystal-field electronic configuration	<u>µ_{spin-only}</u>
ii.	$[Cr(H_2O)_6]^{3+}$		
iii.	[FeCl ₄]		
iv.	$[Fe(CN)_6]^{3-}$		
v.	$[Ni(SCN)_4]^{2-}$		
vi.	$[Cu(en)_2(H_2O)_2]^{2+}$		
vii.	$\left[\mathrm{CoF}_{6}\right]^{3-}$		
viii.	$[\mathrm{IrF}_6]^{3-}$		
ix.	$[Co(en)_3]^{2+}$		
X.	$[Rh(en)_3]^{2+}$		
xi.	$[Co(bpy)_3]^{3+}$		

xii. $[Co(CO)_4]^-$

7. Make up a spectrochemical series from the following ligands (i.e., arrange their relative field strength): Cl⁻, NH₃, CO, -SCN⁻, -NCS⁻, H₂O, en, CN⁻.

8. Predict whether the following 4-coordinate complexes are likely to be square planar or tetrahedral:

- a. $[NiCl_4]^{2-1}$ b. $[PtBr_4]^{2-1}$
- c. $[Ni(CN)_4]^{2-}$
- d. $[Ni(CO)_4]$

Chapter 11 Material:

(1) Fill the following table for octahedral complexes. Refer to your class notes and the Tanabe-Sugano diagrams (Figure 11-7).

d ⁿ	Ground state term symbol for free ion	Ground state term symbol for complex	Excited state term symbols for allowed transitions (see note* below)
2			
3			
4 (HS)			
4 (LS)			
5 (HS)			
5 (LS)			
6 (HS)			
6 (LS)			
7 (HS)			
7 (LS)			
8			

* If there is more than one allowed transition, list them in order of increasing energy.

2) Fill the above table but now for **tetrahedral** complexes.

d^n	Ground state term symbol for free ion	Ground state term symbol for complex	Excited state term symbols for allowed transitions (see note* below)
2			
3			
4			
5			
6			
7			
8			

* If there is more than one allowed transition, list them in order of increasing energy.

3) Practice making and filling tables similar to the above tables but instead of generic d^n in the first column use real octahedral and tetrahedral complexes from among those given in Problem 6 above about Chapter 10.