24-2. Determine the path loss for a 3.4-GHz signal propagating 20,000 m.
 129 dB

24-4. Determine the noise power for a 20-MHz bandwidth at the input to a receiver with an
 input noise temperature of 290°C.
 -98.9 dBm

24-5. For a system gain of 120 dB, a minimum input C/N of 30 dB, and an input noise power of
 -115 dBm, determine the minimum transmit power (P_t).

24-6. Determine the amount of loss attributed to a reliability objective of 99.98%.
 37 dB

24-8. A frequency-diversity microwave system operates at an RF carrier frequency of 7.4 GHz. The IF is a low-index frequency-modulated subcarrier. The baseband signal is the 1800-channel FDM system described in Chapter 11 (564 kHz to 8284 kHz). The antennas are 4.8-m-diameter parabolic dishes. The feeder lengths are 150 in at one station and 50 in at the other station. The reliability objective is 99.999%. The system propagates over an average terrain that has a very dry climate. The distance between stations is 50 km. The minimum carrier-to-noise ratio at the receiver input is 30 dB. Determine the following: fade margin, antenna gain, free-space path loss, total branching and feeder losses, receiver input noise power (C_{min}), minimum transmit power, and system gain.
 \[FM = 38.41 \text{ dB} \]
 \[A_t = A_r = 49.1 \text{ dB} \]
 \[L_p = 143.76 \text{ dB} \]
 \[L_b = 6 \text{ dB} \]
 \[L_f = 9.4 \text{ dB} \]
 \[N = -101.78 \text{ dBm} \]
 \[C_{\text{min}} = -71.8 \text{ dBm} \]
 \[P_t = -27.57 \text{ dBm} \]

24-10. A microwave receiver has a total input noise power of -102 dBm and an overall noise figure of 4 dB. For a minimum C/N ratio of 20 dB at the input to the FM detector, determine the minimum receive carrier power.
 -78 dBm

24-11. Determine the path loss for the following frequencies and distances:
 \[
 \begin{array}{ccc}
 f (\text{MHz}) & D (\text{km}) & L_p (\text{db}) \\
 200 & 0.5 & 72.4 \\
 800 & 0.8 & 84.4 \\
 3000 & 5 & 115.9 \\
 5000 & 10 & 126.8 \\
 8000 & 25 & 138.8 \\
 18000 & 10 & 137.5 \\
 \end{array}
 \]
24-13. Determine the noise power for a 40-MHz bandwidth at the input to a receiver with an input temperature $T = 400^\circ C$.

-94.3 dBm

24-14. For a system gain of 114 dB, a minimum input $C/N = 34$ dB, and an input noise power of -111 dBm, determine the minimum transmit power (P_t), -94.3 dBm

24-15. Determine the amount of loss contributed to a reliability objective of 99.9995%.

53 dB

24-17. A frequency-diversity microwave system operates at an $RF = 7.4$ GHz. The IF is a low-index frequency-modulated subcarrier. The baseband signal is a single mastergroup, FDM system. The antennas are 2.4-m parabolic dishes. The feeder lengths are 120 m at one station and 80 m at the other station. The reliability objective is 99.995%. The system propagates over an average terrain that has a very dry climate. The distance between stations is 40 km. The minimum carrier-to-noise ratio at the receiver input is 28 dB. Determine the following: fade margin, antenna gain, free-space path loss, total branching and feeder losses, receiver input power (C_{min}), minimum transmit power, and system gain.

$FM = 31.6$ dB, $A_t = A_r = 43.1$ dB,

$L_p = 141.8$ dB, $L_b = 6$ dB,

$L_f = 9.4$ dB, $N = -106 \text{ dBm}$,

$C_{\text{min}} = -78 \text{ dBm}$, $P_t = 21.6$ dBm

24-19. A microwave receiver has a total input noise power of -108 dBm and an overall noise figure of 5 dB. For a minimum C/N ratio of 18 dB at the input to the FM detector, determine the minimum receive carrier power.

-81 dBm